Fault tolerance of quantum low-density parity check codes with sublinear distance scaling
نویسندگان
چکیده
منابع مشابه
Fault-Tolerance of ”Bad” Quantum Low-Density Parity Check Codes
Quantum low-density parity check (LDPC) codes such as generalized toric codes with finite rate suggested by Tillich and Zémor offer an alternative route for quantum computation. Here, we study LDPC codes and show that any family of LDPC codes, quantum or classical, where distance scales as a positive power of the block length, has a finite error threshold. Based on that, we conclude that quantu...
متن کاملLow Density Parity Check Codes
Low Density Parity Check Codes originally invented by Gallagher and subsequently rediscovered by multiple groups 30 years later has become the best known error correcting code in a variety of situations. In this paper, we review regular and irregular LDPC codes. We describe a number of message passing decoders for decoding these codes and explain their operation via examples. Density evolution,...
متن کاملLow-density parity-check codes
A low-density parity-check code is a code specified by a parity-check matrix with the following properties : each column contains a small fixed numberj > 3 of I’s and each row contains a small fixed number k > j of 1’s. The typical minimum distance of these codes increases linearly with block length for a fixed rate and fixed j. When used with maximum likelihood decoding on a snfhciently quiet ...
متن کاملKey Reconciliation with Low-Density Parity-Check Codes for Long-Distance Quantum Cryptography
The speed at which two remote parties can exchange secret keys over a fixed-length fiber-optic cable in continuousvariable quantum key distribution (CV-QKD) is currently limited by the computational complexity of post-processing algorithms for key reconciliation. Multi-edge low-density paritycheck (LDPC) codes with low code rates and long block lengths were proposed for CV-QKD, in order to exte...
متن کاملDesigning entanglement-assisted quantum low-density parity-check codes
This paper develops a general theory for constructing entanglement-assisted quantum low-density parity-check (LDPC) codes, which is based on combinatorial design theory. Explicit constructions are given for entanglement-assisted quantum error-correcting codes (EAQECCs) with many desirable properties. These properties include the requirement of only one initial entanglement bit, high error corre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2013
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.87.020304